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Abstract Automatic differentiation (AD) is a useful tool for computing Jacobians
of functions needed in estimation and control algorithms. However, for many inter-
esting problems in robotics, state variables live on a differentiable manifold. The
most common example are robot orientations that are elements of the Lie group
SO(3). This causes problems for AD algorithms that only consider differentiation
at the scalar level. Jacobians produced by scalar AD are correct, but scalar-focused
methods are unable to apply simplifications based on the structure of the specific
manifold. In this paper we extend the theory of AD to encompass handling of differ-
entiable manifolds and provide a C++ library that exploits strong typing and expres-
sion templates for fast, easy-to-use Jacobian evaluation. This method has a number
of benefits over scalar AD. First, it allows the exploitation of algebraic simplifica-
tions that make Jacobian evaluations more efficient than their scalar counterparts.
Second, strong typing reduces the likelihood of programming errors arising from
misinterpretation that are possible when using simple arrays of scalars. To the best
of our knowledge, this is the first work to consider the structure of differentiable
manifolds directly in AD.

1 Introduction

Computation of the Jacobian matrix of a nonlinear function is an essential part of
many estimation and control algorithms and, as such, it is a ubiquitous task within
robotics and computer vision. When faced with the task of implementing Jacobian
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computation within a computer program, there are essentially four choices1. First,
one can hand-compute the analytical expression. This is easy for simple functions,
careful attention may be paid to the correct handling of singularities in the opera-
tions, and the computations may be hand-optimized for speed. However, it may be-
come arduous to compute and verify Jacobians every time a small change is needed.
Second, one may approximate the derivatives numerically. This is easy to imple-
ment but the resulting Jacobians may be inaccurate for highly nonlinear functions
and finite differencing schemes can fail completely when the functions include con-
ditional statements. Third, one may use symbolic differentiation tools to generate
code from the nonlinear functions. The resulting Jacobians are accurate and highly
efficient to evaluate but this method involves a pre-processing step and there is no
guarantee that the automatically generated code correctly handles singularities. Fi-
nally, one may use Automatic Differentiation (AD) to compute the Jacobian ma-
trices algorithmically. AD algorithms compute derivatives by exploiting the deter-
ministic nature of derivative computation. The derivatives of atomic operations are
implemented by the AD toolkit. The derivatives of more complex functions are con-
structed by applying the chain rule at each operation and bookkeeping the results.
The application of AD is extremely easy using one of the many tools available2. Ja-
cobians computed by this method are as accurate as their hand-coded counterparts
but they are less efficient to compute and, again, may not handle all singularities.

In terms of accuracy and evaluation speed, hand coding or code generation are
the clear choices. However, they share the common drawback that any change in the
original function requires the Jacobian computation to be updated in lockstep. When
prototyping, AD alleviates this requirement as changes in the nonlinear function are
automatically reflected in the Jacobian computation. In our experience, researchers
live continually in the prototyping phase and so, for problems in robotics focusing
on estimation and control, AD is a tool to accelerate research.

However, for many interesting problems in robotics, state variables live on a Dif-
ferentiable Manifold (DM). In robotics the most important DMs are the proper rota-
tion and Euclidean groups in two- and three-dimensional Euclidean space ({SO(2),
SO(3)} and {SE(2), SE(3)} respectively) for rigid-body kinematics, as well as the
two-dimensional sphere, S2, (e.g. for bearing vectors in sensor models [6]). Unit-
length quaternions (elements of S0(H)) are another popular choice for representing
orientations.

The handling of state variables on DMs within estimation and control has
been the subject of active research for many years in robotics and aerospace
[12, 4, 1, 3, 5], but this analysis has not made it into the AD literature. The the-
ory and implementation of AD is decidedly focused on the derivatives of scalar
operations as the computational atoms [11]. It is possible to coax AD packages to
compute the correct Jacobians for functions that operate on elements of a DM, but

1 This paper will focus on the scale of problem generally encountered in estimation and control
algorithms in robotics and not deal with methods used for larger-scale problems such as finding
the Jacobian of a fluid simulation with respect to airfoil parameters (c.f. [7]).
2 See http://www.autodiff.org/ for an extensive list of AD tool-kits spanning many popular pro-
gramming languages.
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this involves lifting the derivative computations to the the outer space. Working in
the outer space precludes the possibility to utilize the special structure of the mani-
fold to simplify derivative computation.

In this paper we extend the theory of AD to DMs by considering block operations
as the atoms of computation, and exploiting the specific structure of the manifold
to increase the efficiency of computation. Throughout this paper we will use ex-
pressions involving unit-length quaternions as our main example but the method is
applicable to any DM. A pictorial representation of our contribution is presented in
Figure 1. This figure compares scalar AD with our approach by plotting the com-
putation graph for a simple example in which a unit-length quaternion, q, is used to
rotate a point, v.
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Fig. 1 A simple example in which a unit-length quaternion, q, is used to rotate a point, v. Left:
The computational graph associated with the calculation from the point of view of standard scalar-
focused AD algorithms. Right: The computational graph from the point of view of our method.
Although the evaluation of these two graphs is the same, computing the Jacobian from the left
graph with a dual-number approach requires 168 multiplication and 156 additions, whereas only
3 multiplications are required by taking advantage of the DM structure on the right (see sec-
tion 2.3.2 for details).

We see the contributions of this work to be the following:

• We extend the theory of AD to operate on DMs. Because the atoms of com-
putation become block operations, we call this Block Automatic Differentiation
(BAD). To the best of our knowledge, this is the first work to make this extension.

• We present a prototype C++ implementation of BAD with a number of desirable
properties. First, it is faster than AD that does not explicitly consider differentia-
tion with respect to the underlying manifold. Second, rather that simply overload-
ing operators on scalar or matrix types (a standard method of developing AD), we
develop a type-safe system where every value belongs to a specific mathematical
type with a well-defined tangent space for differentiation. This makes the system
easier to use than standard scalar AD and guards against coding errors possible
from the accidental misinterpretation of arrays of scalar types.
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• We perform a rigorous comparison of our method against the dual-number ap-
proach to AD implemented in the Google Ceres optimization package [2].

The rest of the paper is organized as follows. Section 2 reviews the background
theory and presents the basis for our BAD algorithm. Section 3 describes our pro-
totype implementation of BAD as a C++ library. Our experimental results are pre-
sented in Section 4 and we conclude in Section 5.

2 Theory

This section reviews the relevant theory on AD and DMs, and then describes our
extension to bring the two concepts together.

2.1 Automatic Differentiation

An excellent introduction to Automatic (or Algorithmic) Differentiation is presented
in [11] and [10]. This section attempts to summarize the content therein to bring the
minimum of context on the topic. The interested reader is referred to these docu-
ments and the references therein for further details.

In the realm of computer science, AD is an ancient field, first developed to com-
pute derivatives on specialized computers in the late 1960s. Widespread application
of the technique came with the development of numeric tools in Fortran in the last
two decades of the 20th century.

The basic idea of AD is easy to explain by imagining the evaluation of math-
ematical expressions represented by a computation graph. When interpreted by a
compiler, a numeric expression is represented as a computation tree, with constants
or variables as leaves and operators (‘+’,‘−’,...) and functions (cos, sin, exp, ...) as
interior nodes. Because of sub-expressions being reused or compiler optimization,
this tree becomes a computation graph (more precisely, a directed acyclic graph).
Figure 1 depict such computation graph for rotating a 3D point with a quaternion.

The foundation of AD stems from the fact that the rules of differentiation are
deterministic and they can be applied mechanically and recursively to the compu-
tation graph. Rather than deriving a formula for the derivative of an expression, the
derivative is computed algorithmically by traversing the graph and using a com-
bination of the chain rule and known operator differentiation rules. Traversing the
graph from the leaves to the root is known as ‘forward’ AD and traversing it from
the root to the leaves is known as ‘backward’ AD. Backward AD is more complex
to implement and requires more storage but typically requires fewer operations,
whereas forward AD can be implemented in a straightforward manner with opera-
tor overloading and/or dual numbers. In the latter case, the AD system evaluate the
expression of interest, initially designed for numeric values, on a specific data struc-
ture grouping the expression value and its derivative(s) at each node of the graph.
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A recent example of such dual-numbers is the Jet class used by Google Ceres[2] to
implement its AD feature.

In traditional languages not supporting operator overloading (e.g. Fortran 77),
AD has been implemented by a pre-processor stage that would parse an expres-
sion in the original language and generate code to compute the expression and its
derivative(s), to be compiled and linked in the final program.

Our contribution lies in the fact that adding knowledge about the underlying DM,
we can dramatically simplify the computational graph (e.g. Figure 1). By consider-
ing differentiation and the chain rule at the block level, we are able to exploit specific
problem structure and increase computational efficiency. We compare our approach
to the “dual-number” AD [9] implemented in Google Ceres[2].

The basic idea of the dual-number concept to do AD for scalar functions is to
calculate the derivatives value alongside the functions values through the compu-
tation graph from the leaves to the root. This is done by applying all scalar op-
erations to pairs of value v and derivative’s value d 〈v,d〉. The derivative’s value
starts with 1, while the values start with the value the function is evaluated at. The
scalar operations apply normally on the value parts, but a special corresponding op-
eration to the derivative. For example 〈v1,d1〉 ∗ 〈v2,d2〉 := 〈v1v2,d1v2 + d2v1〉. To
calculate gradients of functions in multiple scalar variables one simply keeps one
second number for each variable and initializes each variable with the correspond-
ing second number as 1 and the others as zero. For example a ∗ b one would then
calculate the value and gradient at a = 2,b = 3 as follows : 〈2,1,0〉+ 〈3,0,1〉 =
〈2∗3,1∗3+0∗2,0∗3+1∗2〉= 〈6,3,2〉. The gradient can then be extracted as the
row vector of all the resulting second numbers (3,2).

2.2 Differentiable Manifolds and Jacobians

The concepts of differential geometry have been adopted by the robotics commu-
nity as the mathematical underpinnings of kinematics and dynamics. An excellent
introduction is available in Murray et al. [8] but we will provide a brief overview of
the concepts necessary to understand the idea of BAD.

For the scope of this paper a m-dimensional DM (with m ∈ N) is a set, M ,
together with an m-atlas, AM , inducing a second-countable Hausdorff topology on
M . To precisely define the notion of an atlas is beyond the scope of this paper,
but informally AM is a collection of charts, where each chart, ϕ : Uϕ →M , is
an invertible mapping defined on an open subset Uϕ of Rm onto a subset of M .
The atlas provides a differentiable structure to the manifold M . Using these charts,
we can do differential calculus for functions between DMs, which include all finite
dimensional vector spaces (by assigning DMs that reproduce the usual calculus on
vector spaces).
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2.2.1 Defining a Local Jacobian

Consider a mapping f : M →N between the m-dimensional DM M and the n-
dimensional DM N . At a point p∈M , for f there exist a notion of differentiability
and a formal local linearization, the differential, denoted with dp f . Its rigorous defi-
nition is also beyond the scope of this paper. Informally it plays the role of a deriva-
tive in a DM context. For algorithmic treatment, one requires a matrix representing
this differential, but the usual Jacobian of nonlinear functions is only defined for
mappings between vector spaces.

However, after choosing charts ϕM and ϕN around p and f (p) respectively, one
may define f̂ := ϕ

−1
N ◦ f ◦ϕM at p̂ := ϕ

−1
M (p), a mapping Rm ⊃ dom(ϕM )→ Rn,

where dom(ϕM ) denotes the domain that ϕM is defined on. We call f differentiable
at p iff f̂ is differentiable at p̂ and define f ’s Jacobian in these charts with,

Jp f := Jp̂ f̂ = J
ϕ
−1
M (p)(ϕ

−1
N ◦ f ◦ϕM ). (1)

These Jacobians can then play the same role in algorithms dealing with manifolds
as the usual Jacobians do for nonlinear mappings between vector spaces. The algo-
rithmic complexity to calculate them depends not only on f but also on the chosen
charts. The latter feature is one of the underlying principles that BAD tries to exploit.

2.2.2 Defining a Global Jacobian

Usually manifolds are algorithmically represented as embedded sub-manifold of an
outer R-vector space OM := ROM , with OM > m. This means informally that M
is represented by a subset of OM for which the differentiable structure inherited
from OM makes it a DM diffeomorphic to M . Hence, points of M can easily be
represented as the corresponding elements of OM . A simple example is the Lie
group of unit-length quaternions, a three-dimensional manifold that is often stored
and manipulated as the S3 sub-manifold of R4. In the following, we will assume that
M and N are embedded sub-manifolds of ROM and RON respectively.

This situation allows for a special way to acquire a Jacobian for f . One can
choose a mapping f̃ : V →ON defined on an open environment V ⊂OM of p such
that f |M∩V = f̃|M∩V and calculate the Jacobian Jp f̃ ∈ RON ×OM of f̃ instead. Here,
F |A denotes the restriction of a mapping F on a set A. We will call Jp f̃ a global
Jacobian of f . Note that it does not require a choice of charts but depends on the
choice of f̃ instead. For some applications this global Jacobian is already usable
but for many it introduces instabilities and performance loss because it calculates a
matrix that is bigger than necessary (recall that the local Jp f ∈ Rn×m) introducing
extra degrees of freedom. In those cases one can calculate Jp f in a second step after
choosing charts from Jp f̃ by exploiting,

ϕ
−1
N ◦ f ◦ϕM |U = ϑ ◦ f̃◦ϕM |U (2)

=⇒ Jp f = J f (p)ϑ · Jp f̃ · Jp̂ϕM , (3)
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for an open set U ⊂ dom(ϕM ) ⊂ Rm containing p̂, small enough, and a differen-
tiable ϑ : f̃(ϕM (U))→ Rn, such that ϑ |dom(ϕ−1

N )∩dom(ϑ) = ϕ
−1
N |dom(ϕ−1

N )∩dom(ϑ).
Even though this introduces an unnecessary step in the algorithm, it is precisely

the path suggested by a scalar-based AD. Because the manifolds are represented
as embedded sub-manifolds and thus the algorithm evaluating f maps, in practice,
elements of OM to elements of ON . Hence, applying a scalar-based AD approach
directly on this evaluating algorithm will calculate a global Jacobian, Jp f̃, typically
concealing the fact that a choice of f̃ does happen in this step.

The missing two Jacobians in (3) can either be calculated using scalar-based
AD or by manually supplied algorithms. The latter is exactly the concept behind
the current Ceres implementations when one uses its local parametrization, which
plays here the role of the chosen chart ϕM . As Ceres does not currently support
manifold-valued error terms it can only be used in cases where N is a vector space
and thus ϑ can be chosen trivial.

2.3 Block Automatic Differentiation

This section provides an overview of the BAD concept and a simple worked example
showing the magnitude of speedup that is possible.

2.3.1 Overview

The motivation behind the development of BAD is to be able to inject knowledge
from the specific structure of a DMs into the AD process in order to speed up the
calculation of Jacobian matrices. The speedups gained by this approach will be spe-
cific to each manifold.

To enable an AD library to do that, it needs to know which DMs are involved in
a mapping f : M →N that should be differentiated. To achieve that, the primary
idea is to consider a computation graph on a mathematically higher level. Instead
of primitive scalar operations (+,∗, . . . ) on a single scalar type, we consider a set
of basic operations that operate on points in manifolds. For example, this encom-
passes the usual vector and matrix operations, but also geometric operations like
exponential maps, or special operations like rotation of a 3D point by a unit-length
quaternion.

In practice most differentiable functions of interest between DMs can be decon-
structed into a computation graph compounding such basic operations. These are
the computational atoms that we think in when building up mathematical models
and, in robotics, there is a surprisingly small set of such basic operations needed to
implement many fundamental algorithms.

Such a high level computation graph can then be grouped by a BAD library into
sub-blocks for which there is optimized (Jacobian) evaluation code. This optimized
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code can be either be manually written or the output of an code generator of a
symbolic toolkit.

In this way, the BAD concept is a mixture of manual, symbolic, and automatic
differentiation, allowing a series of novel opportunities to optimize the computa-
tional complexity:

• to derive a suitable intermediate value-cache structure for the evaluation of the
compound function and Jacobian evaluation;

• to automatically apply mathematically simplified algorithms for whole com-
pound functions;

• to choose, based on the expression, the Jacobian evaluation direction or even
mixtures of forward and backward steps; and

• to use highly optimized matrix manipulation libraries to do the final calculations.

However, there is one important obvious drawback when compared to AD: there
are many more combinations of manifolds and basic operations on them than scalar
operations. While it is easily possible to make a scalar AD library complete, a BAD
library will never be. Because of this it is very important for a BAD library to be user
extensible and to grow over time, eventually reverting to scalar AD as a last resort.
To address this, our implementation efforts have been focused on building up a core
framework that tries to make it as easy as possible to add support for manifolds and
operations.

Ultimately, a BAD library will be less optimal than the output of an ideal sym-
bolic tool optimizing the whole function f . Nevertheless, current symbolic tools
have many important drawbacks compared to the BAD concept:

• the work flow from the mathematical model to the running code involves extra
steps (i.e. code generation during the compilation phase) that may take much
more processing time, especially when the expressions get quite complex;

• they are bad in factoring out repeated blocks to functions and thus produce huge
code that is impossible to read and hard to maintain;

• they don’t allow dynamic (at run-time) construction of the function f , which can
be essential for special problems; and

• they usually do not incorporate matrix manipulation libraries and thus neglect a
very important intermediate level of optimization.

2.3.2 Example

Here we provide the simple example of the rotation of a 3×1 vector, v, by a rotation,
C, represented by a unit-length quaternion, q, to illustrate the potential of mathe-
matical simplification of the Jacobian evaluation by exploiting knowledge about the
underlying structures. Let v denote the pure imaginary quaternion corresponding to
v. The function we will analyze can then be defined as,

r : S0(H)→ R3, q 7→ Im(qvq̄), (4)
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where multiplication of non-bold quantities is quaternion multiplication, the over-
bar denotes the quaternion conjugate operation, and Im(·) extracts the imaginary
components of the quaternion as a 3× 1 vector. Here, r(·) is only defined on the
unit-length quaternions.

To be able to write an algorithm that evaluates this function or its Jacobian, we
have to define how to represent the involved quantities. We will represent q with a
4-tuple (q0,q1,q2,q3) identified with q’s coordinates in default ordered basis of H,
(1, i, j,k). v and r(q)’s value will be represented by the usual 3-tuples. To evaluate
(4), the scalar calculations shown in Listing 1 can be executed (taken directly from
the Ceres source code). (see Figure 1 for the equivalent computation graph).

Listing 1 Algorithm evaluating r(q) defined in eq. (4)

1 t1=-q3*q3; t2= q0*q1; t3= q0*q2; t4= q0*q3; t5=-q1*q1;
2 t6= q1*q2; t7= q1*q3; t8=-q2*q2; t9= q2*q3;
3 r0=2*((t8+t1)*v0+(t6-t4)*v1+(t3+t7)*v2)+v0;
4 r1=2*((t4+t6)*v0+(t5+t1)*v1+(t9-t2)*v2)+v1;
5 r2=2*((t7-t3)*v0+(t2+t9)*v1+(t5+t8)*v2)+v2;

These are 21m+18a Floating Point Operation (FLOP)s for a single evaluation3.
To calculate the local Jacobian matrix Jqr at an arbitrary q ∈ S0(H) using a dual-

number approach, we follow the method utilizing the outer vector space encom-
passed by (3)). To start we analyze the complexity of the first step in which one
would calculate the Jacobian of r̃ : H→R3, defined by the pseudo code in Listing 1
(corresponding to f̃ in Section 2.2). Using the dual-number approach, it is neces-
sary to propagate four extra variables through each operation (one partial derivative
per component of (q0,q1,q2,q3)) (see 2.1). For each extra variable, a multiplica-
tion in the original code requires an extra 2m+ 1a and each addition requires an
extra 1a. This results in 21(2m+ 1a)+ 18a = 42m+ 39a FLOPs per variable and
4(42m+39a) = 168m+156a for the full 4x3 global Jacobian matrix. To build the
local Jqr we have to choose a chart around q. We will use the common exponen-
tial chart ϕq : U ⊂ R3 → S0(H),w 7→ exp(w)q, where w denotes the pure imagi-
nary quaternion with vector part w and U is an environment of 0 small enough to
make the map injective. Its Jacobian at w = 0 can be calculated from q with nega-
tions only. The remaining step is to multiply these matrices, making the total cost
9(4m+3a) = 36m+27a, assuming a straightforward implementation.

Our approach would exploit the following simplification of the general direc-
tional derivative in direction w ∈ R3 to calculate Jqr = J0(r◦φq).

3 Here, m represents multiplication operations and a represents addition operations. We ignore
negations.
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J0(r◦ϕq) ·w = (dqIm(qvq̄))(wq) (5a)
= Im(wqvq̄+qvwq) (5b)
= Im(wqvq̄+qvq̄w̄) (5c)
= Im(wqvq̄−qvq̄w) (5d)
= Im([w,qvq̄]) (5e)
= 2w× Im(qvq̄) (5f)
= 2w× r(q) (5g)

In the above, [·, ·] is the commutator of quaternions and× represents the cross prod-
uct of 3×1 vectors. Note that the equations above just sketch the proof, sometimes
taking advantage of concepts requiring more in-depth knowledge of DM and specif-
ically of H. For the sake of brevity we will stay at this level of details here.

To calculate the columns of r’s Jacobian matrix, one would evaluate the last ex-
pression for w substituted with each default basis vector of R3. In these evaluations,
the cross product becomes trivial (i.e. only requiring negations), reducing the FLOP
count to 3m needed to scale the components by a factor 2.

The example above shows how we can go from 204m + 183a FLOPs to 3m
FLOPs to calculate the Jacobian by choosing a beneficial local chart and inject-
ing knowledge about the underlying DM and the outer space at the block level. Any
manifold has the potential to benefit from this method based on its specific structure,
or by choosing advantageous embeddings or tangent space basis vectors. For unit-
length quaternions representing rotations, one would implement multiplication and
inversion, along with the log and exponential map, resulting in a full-featured BAD
system for manipulation of expressions for this specific DM. For any other manifold
of interest, one would follow the same procedure, writing down the operations to be
supported, deriving some efficient analytical expressions for the Jacobians induced
by these operations, and implementing these as operations supported by the library.

3 Implementation

This section describes the usage of our implementation and compares it to the AD
package provided by the Ceres optimizer.

Using the Ceres AutoDiffCostFunction to calculate the local Jacobian of the ex-
pression r(q), one would write the C++ code presented in Listing 2. Please note the
necessary extra step on line 27-29 to convert the Jacobian in global coordinates (of
the embedding space) to the Jacobian in local parametrization.
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Listing 2 Calculating the local Jacobian of the function r(·) with Ceres AutoDiffCostFunction

1 using namespace ceres;
2 struct Cv {
3 const double *v;
4 Cv(const double *v) : v(v) {}
5
6 template <typename T>
7 bool operator()(const T* const q, T* residuals) const
8 {
9 UnitQuaternionRotatePoint(q, v, residuals);

10 return true;
11 }
12 };
13
14 QuaternionParameterization quaternionParameterization;
15
16 void calcJacobian(const double *q, const double *v,
17 double *result, double *qJ)
18 {
19 const double *parameters[] = {q};
20 double qGlobalJ[3 * 4];
21 double *jacobians[] = {qGlobalJ};
22 double qLocalParamJ[4 * 3];
23
24 AutoDiffCostFunction<Cv,3,4> r(new Cv(v));
25
26 r.Evaluate(parameters, result, jacobians);
27
28 quaternionParameterization.ComputeJacobian(q, qLocalParamJ);
29 internal::MatrixMatrixMultiply<3, 4, 4, 3, 0>(
30 qLocalParamJ, 3, 4, localParamJ, 4, 3, qJ, 0, 0, 3, 3);
31 }

Listing 3 illustrates how our approach could be used to solve the same problem.
In this example, we use the “auto” keyword from C++ 2011 to simplify the code
and let the compiler deduce the type of an expression4.

In line 6, the values pQ is converted into something one can later take a derivative
with respect to (=Diffable). The Ref template only enforces capturing per reference
(as also in line 7 with v an pV).
In line 9, the high-level computation graph converted to a type and becomes (thanks
to auto) the type of r. The data of r will only contain the references to pQ and pV.
In line 11, an intermediate derived-value cache will be created. Its type will depend
on r’s type and essentially include storage to store intermediate values that could be
needed repeatedly in the (Jacobian) evaluation (e.g. the conjugate of q or its rotation
matrix counterpart). The resulting storage is embedded per reference into the cache,
to have a unified storage for all values, without the need to copy the result data back.
In line 13, intermediate values that are needed will be calculated (e.g. always the fi-
nal evaluation result — here the rotated vector). In line 14, the Jacobian is computed
directly into the provided storage qJ.

4 In fact without “auto” the whole concept would become quite cumbersome to use because the
type names quickly become huge and unreadable. To allow the use of the library without knowing
about these generated types is one of the big implementation challenges.
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Listing 3 Using the BAD to calculate the local Jacobian of the function r(·).
1 using namespace tex; using namespace Eigen;
2 void calcJacobian(const UnitQuaternion & pQ,
3 const EuclideanPoint<3> & pV,
4 EuclideanPoint<3> & result, Matrix3d & qJ)
5 {
6 Diffable<Ref<UnitQuaternion>, 0> q(pQ);
7 Ref<EuclideanPoint<3>> v(pV);
8
9 auto r = q.rotate(v);

10
11 auto cache = createCache(r, result);
12
13 cache.update(r);
14 evalFullDiffInto(r, q, cache, qJ);
15 }

Because the mathematical types of all variables and operations in the expression
are encoded in their C++ types, it is possible to do the following:

• to derive a suitable intermediate and derived value cache structure for the evalu-
ation of this expression and especially its Jacobian;

• to automatically apply mathematically simplified algorithms (using template spe-
cialization and overload resolution to look them up) to evaluate the expression
and especially its derivatives using this cache structure;

• to implement the Jacobian evaluation using (block) forward or backward eval-
uation (or some mixture of the two), whatever is the fastest for this particular
fragment of the computation graph.

4 Experiments

In this section we describe two experiments comparing our BAD prototype imple-
mentation with the dual-number approach implemented by Ceres. In the first exper-
iment, we compare the timing of Jacobian evaluations on increasingly large prob-
lems. In the second experiment, we use our approach on real-world data in a non-
linear optimization problem whose goal is to estimate the time-varying orientation
of an elephant seal in a wildlife monitoring context.

4.1 Comparison with state-of-the-art Automatic Differentiation

In the first experiment, we compared the AD implementation of Ceres to our pro-
totype BAD implementation. To measure performance on an increasingly complex
problem, we measured the time required to calculate the value and the Jacobian of
expressions of the form,
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Fig. 2 Performance comparison for evaluating the value and Jacobian of ∏
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i=1 Civ, as a function of

N. The red line (dual n. AD) refers to the dual-number approach implemented by Ceres, the green
line corresponds to BAD and the blue line is a hand-tuned version of the evaluation.

C1v
C2C1v
CN . . .C1v,

for N ∈ 1 . . .20 (6)

where Ci is a rotation (represented in our case by a unit-length quaternion), and
v is a 3× 1 vector. The time required by Ceres (denoted as dual-number AD) and
by our approach, as a function of the problem size, is shown in Figure 2. On these
artificial problems, there is an obvious benefit for using the specific structure of
the DM to compute the Jacobian. However, we also compared it with a hand-tuned
implementation of the Jacobian calculation. This results in the lowest curve (blue) in
Figure 2. Numerically, on this specific example, we find that BAD is 12 times faster
than Ceres, but still 4 time slower than the hand-tuned evaluation, independently of
the problem size.

4.2 Application: Elephant-Seal Attitude Estimation

In this section, we will compare the performance of the different optimization solu-
tions on a specific application: the estimation of the attitude of elephant seals based
on accelerometer and magnetometer recording collected over weeks or months with
sensors attached to the animals while they are at sea. Although the data-set is pecu-
liar and might seem far outside the field of robotics, the problem of batch attitude or
position estimation from initial measurement unit is a common issue for underwater
and flying robots.

The sensors attached to the animals record the following data at 1Hz: depth,
acceleration, magnetic field. A sound-based system estimates the animal linear ve-
locity but due to energy saving considerations, this is switched on only for 3 hours
every 12 hours. At the surface, global positioning is retrieved from the ARGOS
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satellites. To illustrate the point of this paper, we will focus on using the accelerom-
eter and the magnetometer to retrieve the animal attitude. In a later stage, this could
be used in combination with the velocity measurement to estimate a 3D trajectory, or
in combination with GPS data to estimate sea currents. In a real situation, it is also
necessary to use the batch estimation process to estimate some sensor calibration
parameters. All these extensions will be kept out of scope for this paper.

4.2.1 Problem Statement

Formally, the state we are estimating is the seal attitude as a rotation matrix Ct at
time t and the propulsion force Pt it applies along the x axis in its body frame. To
this end, we have the measurements of two constant vectors in the world frame:
the acceleration G = [0,0,9.81]T and the magnetic field B = [Bx,By,Bz]

T . The exact
value of the magnetic field can be found using the IGRF5 magnetic field model,
which depends on the time, the latitude and the longitude. For sake of simplicity,
we will assume here that the reference magnetic field is constant between two GPS
fix. We will denote bt the magnetic field reported by the sensor in the body frame,
and at the accelerometer output. Note that the measured acceleration results from
the combination of gravity and the propulsion force Pt ·x applied by the seal, where
x is the longitudinal axis of the animal.

With these variables we can build the following error terms for the accelerometer
and magnetometer:

Facc(t) =Ct · [at −Pt ·x]−G and Fmag(t) =Ct ·bt −B (7)

In addition, we can make some continuity hypothesis on the attitude and the propul-
sion and express them as the following error terms:

Fp(t) = Pt −Pt−1 and FC(t) =Ct ·Ct−1 (8)

The initial values used for the optimizer is propulsion at zero and Euler angles
(roll, pitch and yaw) estimated independently from the accelerometer and magne-
tometer.

4.2.2 Comparison of optimization performance

Figure 3(a) and 3(b) shows the time, t, required to calculate the Jacobians necessary
to solve the simplified seals optimization problem using single-threaded execution
on a benchmark PC after loading the first N input lines of the measured data. In
Figure 3(a), we measure the time (using the x86 RDTSC instruction) in total spent
in the Jacobian calculation function per error term. In Figure 3(b), we show the time
measured by the Ceres optimizer for the whole Jacobian evaluation step (with the

5 http://www.mathworks.fr/matlabcentral/fileexchange/28874-igrf-magnetic-field
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clock used in Figure 3(a) disabled). The solid line represents our implementation of
BAD and the dashed one shows Ceres implementation of the dual-number approach.
Both show the performance improvement by BAD. In Figure 3(a), BAD is approx-
imately 2.5-times faster, in Figure 3(b) it is only about 13.5%. The explanation for
this example is that Ceres spends a relatively large amount of time constructing the
overall Jacobian for the complete optimization problem from the Jacobians of the
individual error term, which are rather simple error terms. Ceres includes the full
sparse Jacobian matrix construction in what it reports as the Jacobian calculation
time.
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Fig. 3 Time required to compute the Jacobian as a function of the number of error terms for the
simplified seal problem. On the left, only Jacobian computation time is included, on the right, the
time for the creation of the full sparse Jacobian matrix is also included. See text for details.

To be complete, we must state here that the comparison here is slightly unfair in
favor of Ceres for two reasons. Ceres expects global Jacobians (the natural output
of a scalar AD) instead of the local Jacobians that they later calculate from these
global ones by multiplying by the Jacobian of the local parametrization (see (3)). To
fit with this requirement, we calculate n× 4 matrices from our n× 3 Jacobian and
Ceres then calculates the n×3 back (n is the dimension of the error term). Each of
these conversions requires a matrix multiplication (first 3× 4 then 4× 3). The first
multiplication delays our implementation in Figure 3. It would be fairer to skip these
artificial steps but it would require changes in the Ceres code, which would further
improve the performance of BAD in Figure 3(b). In addition, Ceres uses non-aligned
Eigen::Vectors, while our implementation needs aligned ones, which requires us to
copy the data into aligned vectors. The time spent copying these vectors is also
counted in the data depicted in Figure 3.
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5 Conclusions

In this paper we have brought together the concepts of AD and DM to develop a
block AD approach that we cal BAD. This approach has the potential to be much
more computationally efficient than traditional scalar AD by exploiting the specific
structure of the DM. We presented a worked example of a unit-length quaternion
rotating a 3×1 vector and showed how it can greatly reduce the number of instruc-
tions needed for Jacobian computation. Finally, we presented experimental results
on simulated and real data that show that our prototype implementation of BAD is
indeed faster than a state-of-the-art AD approach.

Our next step will be to finalize the interface and implement a full-featured BAD
library in C++ encompassing the most common DMs and operations needed in
robotics.
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