Sensors configuration

Sensors Intrinsics (pinhole) Extrinsics (extrinsics)
Camera 1

Model: FL3-U3-20E4C-C
FoV: 102° x 82°
W: 1600    H: 1200
FX=772.0846, FY=773.5985, CX=766.31413, CY=597.03187​   
D=[-0.20510379301, 0.08491934467, -0.00119285038, 0.000154900, -0.0167629201]
Q=[-0.70710678, ​0.70710678, 0]​, 0
T=[0.15342, -0.0587, -0.04233]
Camera 2

Model: FL3-U3-20E4C-C
FoV: 102° x 82°
W: 1600    H: 1200
FX=​775.6484, FY=​776.01552, CX=​745.573795, CY=​597.230424​   
D=[-0.2039988277, 0.085687646607, -0.00019175875, -9.68752e-05, -0.0157322399]
Q=[0.70710678, 0, 0]​, 0.70710678
T=[0.03, -0.349622, -0.01455]
Camera 3

Model: FL3-U3-20E4C-C
FoV: 102° x 82°
W: 1600    H: 1200
FX=​774.2771, FY=​774.4499, CX=​783.93828, CY=​574.1349763​   
D=[-0.2001681531, 0.076846362477, -0.00059278558, -0.000581592, -0.0137803622]
Q=[0, 0.70710678, 0.70710678]​, 0
T=[0.03, 0.230462, -0.01455]
INS (base_link)

Model: VectorNAV 
VN-200 Rugged
N/A Q=[0, 0, 0]​, 1
T=[0, 0, 0]
Lidar

Model:
RS-bPearl
360° x 90°
N/A Q=[1, 0, 0]​, 0
T=[0.01848, -0.05937, -0.113]

Tip/example on using the extrinsics:
- A point P_cam {Px, Py, Pz, 1} in the camera 1 frame can be brought into the INS frame using: P_ins = T1 * P_cam where T1 is a 4x4 rigid body transform that represents the above extrinsics for camera 1, and * is a matrice multiplication operator.

Surveys captured on-foot

Date Camera 1  Camera 1  -Downsampled Camera 2 Camera 2 - Downsampeld Camera 3 Camera 3 - Downsampled Lidar Metrics
(RTK GPS+ INS)
August 2020 8.3G 424M 5.5G 280M 6.5G 330M 2.0G 2.2M
September 2020 8.7G 441M 11G 539M 13.0G 621M 1.9G 3.6M
October 2020 9.5G 483M 12G 609M 14.0G 679M 2.3G 4.2M
November 2020 9.3G 476M 14G 678M 15.0G 766M 1.9G 3.8M
December 2020 6.5G 330M 8.8G 450M 9.8G 500M 1.9G 3.8M
January 2021 11G 531M 12G 589M 13G 616M 1.9G 4.1M
February 2021 11G 515M 12G 569M 14G 692M 2.0G 4.2M
March 2021 6.6G 335M 9.9G 508M 9.9G 508M 2.0G 3.8M
April 2021 9.6G 492M 13G 629M 14G 671M 1.8G 3.8M
May 2021 8.5G 434M 12G 609M 13G 635M 2.3G 4.2M
June 2021 9.2G 467M 12G 594M 13G 654M 2.3G 4.1M
July 2021 9.2G 470M 13G 620M 13G 650M 2.4G 4.2M

Surveys captured on an electric scooter

Date Camera 1  Camera 1  -Downsampled Camera 2 Camera 2 - Downsampeld Camera 3 Camera 3 - Downsampled Lidar Metrics
(RTK GPS+ INS)
August 2020 4.0G 202M 4.2G 214M 5.2G 263M 1.1G 1.7M
November 2020 5.5 281M 5.7G 290M 7.2G 368M 1.5G 2.7M
December 2020 2.6G 130M 3.4G 171M 3.4G 171M 856M 1.4M
March 2021 2.3G 118M 2.4G 120M 2.6G 133M 625M 1.2M
June 2021 2.1G 106M 2.4G 119M 2.9G 146M 731M 1.2M

If you use this dataset, please cite the following two papers:

Chahine G., Pradalier C., The backpack dataset....

@article{Chahine_2022_FR, 
author = {Chahine, Georges and Pradalier, Cedric},
title = {​Semantic-aware spatio-temporal Alignment of Natural Outdoor Surveys}, 
volume= {2}, 
journal= {Field Robotics}, 
year = {2022},
pages= {1819-1848} }

If you use semantic lidar data, please also cite the following paper:

@InProceedings{Larsson_2019_CVPR, 
author = {Larsson, Mans and Stenborg, Erik and Hammarstrand, Lars and Pollefeys, Marc and Sattler, Torsten and Kahl, Fredrik},
title = {A Cross-Season Correspondence Dataset for Robust Semantic Segmentation}, 
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, 
month = {June}, 
year = {2019} }